Вопросы по химии для промежуточной аттестации обучающихся 9 Б класса

форма: устная

- 1. Виды химической связи. Механизм образования ионной, донорно-акцепторной связи.
- 2. Виды химической связи. Механизм образования ковалентной полярной и неполярной связи.
- 3. Реакции ионного обмена, в каких случаях реакции ионного обмена идут до конца.
- 4. Электролиз растворов, расплавов.
- 5. Кислоты. Классификация. Химические свойства. Получения.
- 6. Классификация солей. Примеры, названия. Гидролиз солей
- 7. Способы получения солей.
- 8. Химические свойства солей в свете ТЭД.
- 9. Основания в свете ТЭД. Классификация. Получения. Химические свойства.
- 10. Оксиды, классификация, способы получения, химические свойства оксидов.
- 11. Сравните химические свойства амфотерного основания и растворимого основания. Докажите уравнениями реакций.
- 12. Химические свойства солей в свете ТЭД.
- 13. Окислительно-восстановительные реакции. Классификация. Примеры.
- 14. Электролиты и не электролиты. Степень диссоциации. Сильные и слабые электролиты.
- 15. Основания в свете ТЭД.
- 16. Кислоты в свете ТЭД.
- 17. Классификация и химические свойства оксидов в свете ТЭД.
- 18. Гидролиз солей.
- 19. Теория электролитической диссоциации. Основные положения ТЭД.
- 20. Каков механизм электролитической диссоциации при растворении в воде веществ с ковалентной полярной связью.
- 21. Каков механизм электролитической диссоциации при растворении в воде веществ с ионной связью.
- 22. Сера. Строение атома. Способы получения серы. Химические и физические свойства серы. Применение серы
- 23. Оксид серы IV. Способы получения оксида серы IV. Химические и физические свойства оксида серы IV. Применение оксида серы IV.
- 24. Оксид серы VI. Способы получения оксида серы VI. Химические и физические свойства оксида серы VI. Применение оксида серы VI.
- 25. Сероводород. Способы получения сероводорода. Химические и физические свойства сероводорода газа и кислоты. Применение сероводорода.
- 26. Серная кислота. Способы получения серной кислоты. Химические и физические свойства серной кислоты. Отличительные особенности концентрированной кислоты. Применение серной кислоты.

Обобщённый план варианта по ХИМИИ

Уровни сложности заданий: Б – базовый; Π – повышенный; B – высокий.

Nº	Проверяемые элементы содержания	Коды прове- ряемых элементо в содержа- ния по кодифи- катору	Коды требо- ваний	Уро- вень	Макс. балл за вы- пол- нение зада- ния	При- мерное время выпол- нения задания (мин.)
----	------------------------------------	--	-------------------------	--------------	--	---

			•	•		
1	Строение электронных оболочек атомов элементов первых четырёх периодов: <i>s</i> -, <i>p</i> - и <i>d</i> -элементы. Электронная конфигурация атома. Основное и возбуждённое состояние атомов.	1.1.1	1.2.1 2.3.1	Б	1	2–3
2	Электроотрицательность. Степень окисления и валентность химических элементов	1.3.2	1.1.1 2.2.1	Б	1	2–3
3	Ковалентная химическая связь, её разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь.	1.3.1	2.2.2 2.4.2	Б	1	2–3
4	Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)	2.1	1.3.1 2.2.6	Б	1	2–3
5	Характерные химические свойства оксидов: основных, амфотерных, кислотных	2.4	2.3.3	Б	1	2–3
6	Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере гидроксосоединений алюминия и цинка). Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты. Реакции ионного обмена	2.5 2.6 2.7 1.4.5 1.4.6	2.3.3 1.1.1 1.1.2 1.2.1 2.4.4	Б	2	2–3
7	Характерные химические свойства неорганических веществ: - оксидов: основных, амфотерных, кислотных; - оснований и амфотерных гидроксидов; - кислот; - солей: средних, кислых, основных; комплексных (на примере гидроксосоединений алюминия и цинка)	2.4 2.5 2.6 2.7	2.3.3	П	2	5–7

0	V	2.4	2.4.2	п	2	<i>5</i> 7
8	Характерные химические свойства	2.4	2.4.3	П	2	5–7
	неорганических веществ: – простых	2.5	2.4.4			
	веществ-металлов:	2.6				
	 оксидов: основных, амфотерных, 	2.7				
	кислотных;					
	– оснований и амфотерных					
	гидроксидов;					
	– кислот;					
	 солей: средних, кислых, основ- 					
	ных; комплексных (на примере					
	гидроксосоединений алюминия и					
	цинка)					
9	Взаимосвязь неорганических	2.8	2.3.3	Б	2	2–3
9	веществ	2.0	2.4.3	ם	2	2-3
10		1 / 0		Г	1	5 7
10	Реакции окислительно-	1.4.8	2.2.1	Б	1	5–7
	восстановительные.		2.2.5	-		
11	Электролиз расплавов и растворов	1.4.9	1.1.3	П	2	5–7
	(солей, щелочей, кислот)		2.2.5			
12	Гидролиз солей. Среда водных	1.4.7	2.2.4	П	2	5–7
	растворов: кислая, нейтральная,					
	щелочная					
13	Обратимые и необратимые	1.4.4	2.4.5	П	2	5–7
	химические реакции.					
14	Расчёты с использованием понятия	4.3.1	2.5.2	Б	1	2
	«массовая доля вещества в		2.0.2		-	
	растворе»					
15	Расчёты массы вещества или объ-	4.3.3	2.5.2	Б	1	2
13	·	4.3.3	2.3.2	Б	1	2
	ема газов по известному количеству					
	вещества, массе или объёму одного					
	из участвующих в реакции веществ					
16	Реакции окислительно-восстанови-	1.4.8	2.2.5	В	2	10–15
	тельные		2.4.4			
17	Реакции ионного обмена.	1.4.5	2.2.4	В	2	10–15
	Электролитическая диссоциация	1.4.6	2.4.4			
	электролитов в водных растворах.					
	Сильные и слабые электролиты					
18	Реакции, подтверждающие	2.8	2.3.3	В	4	10–15
	взаимосвязь различных классов		2.4.3			
	неорганических веществ		2.4.4			
19	Расчёты массы (объёма, количества	4.3.5	2.5.2	В	4	10–15
17	вещества) продуктов реакции, если	4.3.6	2.2.2	"	_	10-13
	,	4.3.8				
	одно из веществ дано в избытке					
	(имеет примеси). Расчёты с	4.3.9				
	использованием понятия «массовая					
	доля вещества в растворе».					
	Расчёты массовой или объёмной					
	доли выхода продукта реакции от					
	теоретически возможного.					
				·		

Всего заданий – 3; из них по уровню сложности проверяемых элементов

содержания: $\mathbf{5} - 10 \ \Pi - \mathbf{5}; \ \mathbf{B} - \mathbf{4}.$

Максимальный первичный балл за работу – 5 баллов.

Общее время выполнения работы -240 **мин**. (для одного учащегося не более 120 мин)